ALMIDONES NATURALES Y MODIFICADOS EN PRODUCTOS ALIMENTICIOS

La amplia gama de posibilidades que ofrecen los almidones en los productos alimenticios modernos los han convertido desde hace varios años objeto de amplia investigación científica en el mundo. Presentamos en este artículo una visión actualizada de lo que se sabe a nivel de estructuras, transformaciones y aplicaciones de los almidones en la industria de alimentos.

Por Jairo Romero
Comité Editorial ALIMENTOS HOY

El almidón, polímero de la D-Glucosa, está compuesto por moléculas lineales (amilosa) y ramificadas (amilopectina), organizadas radialmente en gránulos birrefringentes, característicos de las plantas que los originan.

Fig.1 Ordenamiento de Moléculas en Gránulo de Almidón

Fig.2 Forma Típica de algunos Gránulos de Almidón (1)
El gránulo de almidón es insoluble en agua fría. Al someterlo a calentamiento en medio acuoso absorbe agua y se hincha, perdiendo la birrefringencia a la llamada temperatura de gelatinización (60-75°C). La absorción de agua y el aumento de volumen van acompañados de un fuerte aumento de la viscosidad y la claridad de la dispersión, hasta llegar a un máximo llamado pico de viscosidad, en el cual el gránulo se rompe y la viscosidad disminuye, generándose una mezcla de fragmentos de gránulos hinchados ricos en amilopectina, gránulos fundidos hidratados y moléculas disueltas (lixiviadas) de amilosa.

Al enfriarse esta mezcla, se forman agregados de amilosa-amilosina (retrogradación del almidón), de amilopectina-amiloopectina (recristalización), complejos de inclusión amilosa-lípidos y otras asociaciones con constituyentes como sales, azúcares, ácidos, cationes, otras macromoléculas, etc. Todas estas interacciones se ven afectadas por diversos factores: Elevadas concentraciones de amilosa (como en el maíz o el amilomaíz, donde puede haber del 27 al 50%), implican formación de geles fuertes, opacos, que pueden luego sufrir sinéresis, fenómeno por el cual los productos exhunden agua, afectando la calidad de los productos donde se encuentran (postres o pizzas congeladas, por ejemplo).

Bajas proporciones de amilosa (almidones cérreos), generan, dispersiones claras y viscosas que no gelifican pero actúan como agentes espesantes. Los complejos de amilosa-lípido, en especial con monoglicéridos, evitan la retrogradación del almidón (y por tanto el envejecimiento del pan).

La Fig. 4 muestra cómo cada almidón presenta una curva típica de viscosidad en procesos de calentamiento / enfriamiento. En agua abundante los almidones de papa, tapioca y maíz tienen más altos picos de viscosidad, mayor capacidad de absorción de agua, mayor velocidad de hidratación. El almidón de maíz común presenta un segundo incremento fuerte en viscosidad, por su tendencia a retrogradarse.

Cuando el almidón se calienta en poca agua y poca agitación, como en la precoccción de arroz o maíz, el almidón se gelatiniza, pero no se rompe ni se dis-
Todas estas modificaciones, y combinaciones de ellas en almidones de diversas fuentes, producen una variedad amplia de almidones con infinidad de usos, que en ocasiones compiten con gomas y otros polisacáridos similares.

TABLA No. 1

<table>
<thead>
<tr>
<th>MODIFICACIÓN</th>
<th>CONSISTE EN</th>
<th>Y PRODUCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENTRECruzamiento (Inhibición)</td>
<td>Conformación de puentes sintéticos entre moléculas vecinas.</td>
<td>Aumento de la viscosidad y la resistencia en condiciones extremas de pH, calor, o agitación.</td>
</tr>
<tr>
<td>ESTABILIZACION</td>
<td>Sustitución propilica en grupos hidroxilo.</td>
<td>Impedimento estérico para retrogradar a bajas temperaturas y reducción de T° gelatinización.</td>
</tr>
<tr>
<td>PREGELATINIZACION</td>
<td>Gelatinizar y deshidratar el almidón.</td>
<td>Almidones solubles “precocidos”, modificados o no.</td>
</tr>
<tr>
<td>BLANQUEADO</td>
<td>Oxidación de pigmentos acompañantes por H₂O₂, K_MnO₄ o NaClO₂.</td>
<td>Almidones extrablanco.</td>
</tr>
<tr>
<td>CONVERSION</td>
<td>Hidrólisis ácida de amilopectina a temperaturas por debajo de la gelatinización.</td>
<td>Almidones de baja viscosidad, capaces de gelificar y retrogradar como las gomas dulces.</td>
</tr>
<tr>
<td>SUSTITUCION LIPOFILICA</td>
<td>Sustitución en hidroxilos por agentes hipofílicos.</td>
<td>Almidones con capacidad emulsificante y de fijación de aromas.</td>
</tr>
<tr>
<td>SUSTITUCION HIDROFÓBICA</td>
<td>Sustitución en hidroxilos por agentes hidrófobos.</td>
<td>Almidones no-mojables para talcos corpóreos agentes de moldeo ó para facilitar el flujo de sustancias secas.</td>
</tr>
</tbody>
</table>

MODIFICACION DE ALMIDONES

Hemos descrito hasta ahora las tres propiedades claves de los almidones: Gelificación, viscosidad y absorción de agua. Estas pueden ser manipuladas para aumentarlas, reducirlas, eliminarlas o potenciarlas, según los requerimientos de cada producto alimenticio.

Veamos las principales modificaciones conocidas hasta hoy y su efecto en las propiedades funcionales de los almidones:

APLICACION DE ALMIDONES MODIFICADOS

De lo anterior se deriva un verdadero menú de aplicaciones en el que el técnico puede escoger a su gusto el almidón que confiere al producto que está desarrollando u optimizando alguna característica en particular. Veamos algunas de esas aplicaciones:
<table>
<thead>
<tr>
<th>SI DESEA UN PRODUCTO</th>
<th>PUEDE APLICAR ALMIDONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GELIFICADO, CORTABLE</td>
<td>Ricos en amilosa (maíz, amilomaíz)</td>
</tr>
<tr>
<td>EN POLVO</td>
<td>Cereales, hidrofobos.</td>
</tr>
<tr>
<td>EXPANDIDO DE ALTA TEMPERATURA</td>
<td>Cereales entrecruzados que tienen alta expansión y capacidad de formar películas.</td>
</tr>
<tr>
<td>EXPANDIDO DE BAJA TEMPERATURA</td>
<td>Pregelatinizados con bajo entrecruzamiento que expanden bien al hornear o freír.</td>
</tr>
<tr>
<td>RIGIDO</td>
<td>Amilomaíz entrecruzado para productos como gomas, sucedáneos del queso o coberturas rígidas (de pastillas).</td>
</tr>
<tr>
<td>CREMOSO</td>
<td>Almidón de arroz natural o plegelatinizado, puede sustituir grasa en mayonesas o postres.</td>
</tr>
<tr>
<td>SUAVE</td>
<td>Cereales - precozidos, inhibidos o estabilizados que pueden llegar hasta la textura del pudín.</td>
</tr>
<tr>
<td>CLARO</td>
<td>Cereales poco entrecruzados.</td>
</tr>
<tr>
<td>OPACO</td>
<td>Almidones retrogradables.</td>
</tr>
<tr>
<td>CAPAZ DE SUSPENDER SOLIDOS</td>
<td>Cereales con alto entrecruzamiento, plegelatinizados.</td>
</tr>
<tr>
<td>GRANULOSO (PULPOSO)</td>
<td>Pregelatinizados de partícula gruesa, fuertemente entrecruzados, de baja tasa de hidratación.</td>
</tr>
<tr>
<td>MASTICABLE</td>
<td>Cereales con alto entrecruzamiento en proporciones relativamente altas.</td>
</tr>
<tr>
<td>HUMEDO Y SUAVE</td>
<td>Pregelatinizados, evitan además endurecimiento del pan y otros horneados.</td>
</tr>
<tr>
<td>ALMACENABLE A ALTA TEMPERATURA</td>
<td>Entrecruzados.</td>
</tr>
<tr>
<td>ALMACENABLE A BAJA TEMPERATURA</td>
<td>Estabilización, combinada con entrecruzamiento: confiere estabilidad a procesos de congelación/descongelación.</td>
</tr>
<tr>
<td>RETENEDOR DE HUMEDAD</td>
<td>Pregelatinizado, de baja velocidad de rehidratación, espolvoreado sobre la superficie.</td>
</tr>
<tr>
<td>QUE EVITE LA ABSORCIÓN DE ACEITE FREIDO</td>
<td>Hidrolizados de almidón de tapioca o almidones ricos en amilosa.</td>
</tr>
<tr>
<td>CUCHAREABLE</td>
<td>Cereales combinados con amilomaíz, producen geles cortables, semirígidos.</td>
</tr>
<tr>
<td>LIQUIDO DE ALTA ACIDEZ</td>
<td>Cereales plegelatinizados estabilizados e inhibidos.</td>
</tr>
<tr>
<td>ESPARCIBLE</td>
<td>Cereales plegelatinizados.</td>
</tr>
<tr>
<td>HORNEABLE EN MICROONDAS</td>
<td>Pregelatinizados de baja velocidad de hidratación y alto contenido de amilosa, evitan el ablandamiento de los productos rellenos o que tienen interfase sólido, líquido, como las pizzas o los apanados.</td>
</tr>
<tr>
<td>ESTERILIZABLE</td>
<td>Cereales entrecruzados, claros viscosos, para productos enlatados, sometidos a altas temperaturas.</td>
</tr>
<tr>
<td>RELLENOS DE DONUTS</td>
<td>Cereales ligeramente entrecruzados y altamente estabilizados evitan que el relleno hierva y se licúe durante el horneado de donuts, y su posterior enfriamiento.</td>
</tr>
</tbody>
</table>
La estructura de los almidones naturales, las modificaciones que sufren durante los cambios de fase y la interacción del almidón con otros constituyentes de los alimentos, están lejos de ser bien comprendidas aún por los científicos. Dada la influencia de estos aspectos en las propiedades funcionales de los almidones, constituyen los temas de actualidad en la investigación científica internacional sobre almidones, al lado de otros tres interrogantes: La organización supermolecular, entendida como el reordenamiento de macromoléculas tras los procesos de transformación, el efecto de agentes plastificantes (líquidos y sistemas acuosos) en las transiciones del almidón y su estabilidad en productos alimenticios, y la similitud entre almidones y compuestos sintéticos (2).

El desarrollo de nuevas técnicas de laboratorio para el análisis físico y químico de los fenómenos aquí involucrados, unido al interés por el tema, permite prever avances significativos en la funcionalidad de los ingredientes más baratos y versátiles de la naturaleza: los almidones (y en general los polisacáridos).

Para nuestros países, la investigación en este campo ofrece el atractivo del aprovechamiento de recursos abundantes y de alta calidad comprobada, como el arroz, la papa y otros tubérculos, hacia la obtención de ingredientes y productos de alta tecnología, alto valor agregado y amplio mercado futuro.

ALGUNOS PROVEEDORES DE ALMIDONES EN EL MUNDO

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Dirección</th>
<th>Teléfono</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & B INGREDIENTES INC</td>
<td>Almidón de Arroz</td>
<td>24 Spiedman Rd</td>
</tr>
<tr>
<td>AVEBE AMERICA INC</td>
<td>Almidón de papa</td>
<td>4 Independence Way</td>
</tr>
<tr>
<td>A.E. STALEY MANUFACTURING</td>
<td>Almidones para congelados</td>
<td>2200 E. El Dorado St.</td>
</tr>
<tr>
<td>CALIFORNIA NATURAL PRODUCTS</td>
<td>Almidón de arroz</td>
<td>P.O. Box 1219</td>
</tr>
<tr>
<td>CERESTAR SA/NV</td>
<td>Almidones de maíz</td>
<td>Avenue Louise 149, Bte. 13</td>
</tr>
<tr>
<td>NATIONAL STARCH</td>
<td>Almidones de maíz</td>
<td>10 Fiderne Ave</td>
</tr>
<tr>
<td>ROQUETTE</td>
<td>Almidones de maíz</td>
<td>4, Rue Patoh</td>
</tr>
<tr>
<td>WOODSTONE FOODS</td>
<td>Almidón de arvejas</td>
<td>1445 Church Ave</td>
</tr>
</tbody>
</table>

EN COLOMBIA

<table>
<thead>
<tr>
<th>Empresa</th>
<th>Dirección</th>
<th>Teléfono</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUSTRIAS DEL MAIZ</td>
<td>Cra. 5 No. 52-56</td>
<td>(923) 474880/475253</td>
</tr>
<tr>
<td>QUIMICA AROMATICA ANDINA</td>
<td>Calle 90 No. 13A-31 Of. 403</td>
<td>(91) 2772464</td>
</tr>
</tbody>
</table>

Si desea ampliar la información sobre este artículo o su autor por favor citar este código: 003-1

BIBLIOGRAFIA

